
Spectral multiphoton effects and quantum 

Department of Physics, Queen’s University, Kingston, Ontario  K7L 3N6, Canada
*Corresponding author: shughes@physics.queensu.ca

Published 31 July 2015

This document provides supplementary information to “Spectral multiphoton effects and quantum 
anharmonicities in dissipative cavity-QED systems via off-resonant coherent excitation,” 
http://dx.doi.org/10.1364/optica.2.000689. First, we derive the three-state dressed state eigenenergies 
presented in the main text. Secondly, we use a polaron master equation approach to investigate the role 
of electron-phonon coupling on the multiphoton spectral features. © 2015 Optical Society of America 
http://dx.doi.org/10.1364/optica.2.000689.s001

S1. DRESSED STATE EIGENENERGIES

Here we derive the analytical formula for the dressed state ener-
gies of the cavity-QED system Hamiltonian, H = h̄ΔxLσ̂+σ̂− +
h̄ΔcL â† â + h̄g(â†σ̂− + σ̂+ â) + h̄ηx(σ̂+ + σ̂−) + +h̄ηc(â† + â),
where the various terms are defined in the main paper. In the
Jaynes-Cumming (JC) weak excitation approximation (WEA),
in which we allow at most one quantum excitation in the sys-
tem (i.e., a three-state approximation), the Hamiltonian can be
written in matrix form

H =

⎛
⎜⎜⎜⎝

0 ηx 0

ηx ΔL g

0 g ΔL

⎞
⎟⎟⎟⎠ , (S1)

in the basis {|0g〉 , |0e〉 , |1g〉} (see main paper). Calculating the
dressed state energies is equivalent to solving the eigenvalue
problem det(H − EI) = 0, with the characteristic equation

E3 − 2ΔLE2 + (Δ2
L − g2 − η2

x)E + ΔLη2
x = 0. (S2)

We identify b = −2ΔL, c = Δ2
L − g2 − η2

x and d = ΔLη2
x to

obtain the general cubic E3 + bE2
c E + d = 0. The roots of this

cubic represent the dressed state energies, and can be obtained
using Cardano’s method [1]. This entails using two different
substitutions in order to make the problem more tenable. First
the depressed form of the cubic can be obtained via the substi-
tution E = z− b/3. Then making the substitution z = 2δ cos(θ),

with δ2 = (b2 − 3c)/9 and yN = 2b3/27 − bc/3 + d, we obtain
the form

2δ3[4 cos3(θ)− 3 cos(θ)] + yN = 0

2δ3[cos(3θ)] + yN = 0, (S3)

after making use of a triple-angle trigonometric identity. This
has three unique solutions, giving us the roots

Ek = −b/3 + 2δ cos(2kπ/3 + θ), (S4)

with k = 0, 1, 2. These are also presented in the main text of the
paper in terms of the original variables.

S2. INFLUENCE OF ELECTRON-PHONON COUPLING

In the simple two-level cavity-QED model presented in the
main text, we have neglected to take into consideration the
role of electron acoustic-phonons scattering for the QD, apart
from including a pure dephasing process on the zero phonon
line. Even without cavity coupling, the effects of the acoustic
phonon bath on the optical properties of QDs is well known [3–
5], and characteristic acoustic sidebands appear in the absorp-
tion spectrum. This is because the phonon-interactions dress
the QD exciton levels to form bands, caused by a nonpertur-
bative coupling of the exciton with the continuum of acoustic
phonons. The phonon bath-induced spectral lineshape is ele-
gantly described by the independent boson model (IBM) [6–9],
which shows good agreement with single QD emission experi-
ments.
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In the nonlinear optics domain, EID (excitation-induced de-
phasing) occurs due to the interaction of the laser with the
underlying acoustic phonon reservoir [7, 10–13]. Recently,
Roy and Hughes [14] developed a time-convolutionless mas-
ter equation to describe coherently driven QD-cavity systems
in the presence of the acoustic phonon bath. This polaron-
transformed master equation [15], in appropriate limits, for-
mally recovers both the IBM and the JC model. It was found
that phonon interactions results in two key effects: (i) nonper-
turbative cavity-exciton coupling, and (ii) a systematic dephas-
ing (broadening) of the Mollow triplet peaks—in agreement
with experiments using QD micropillars [19]. In the linear exci-
tation regime, and using incoherent excitation, electron-phonon
scattering results in an asymmetric vacuum Rabi splitting [15–
18] and off-resonant cavity feeding [16, 17, 20–25].

Here we will use the cavity-QED polaron master equa-
tion [14] to compute a range of exciton and cavity emitted spec-
tra and show that the main spectral peaks remain robust with
respect to phonon coupling, though the general features are less
clear and broadened with phonon interactions. As an example,
in the main paper we examined multiphoton effects for cav-
ity driven systems, for parameters appropriate for describing
semiconductor systems. Here, we include the effects of electron-
acoustic phonon coupling to the N-th order and verify that the
multiphoton effects we predict are retained with this more com-
plete theoretical treatment for semiconductor QDs.

We will use the polaron-transformed master equation to
compare with some of the predictions above for a simple two-
level system. The accuracy of this approach has also recently
been tested on photoluminescence (PL) intensity emission with
a coherently excited system [26], for Mollow triplet data as
a function of laser detuning [27], and for explaining phonon-
mediated population inversion [28–30]. We highlight that this
master equation approach [14] allows one to study the effects of
phonons on the cavity emissions by including electron-acoustic
phonon coupling to all orders. We will utilize parameter set-A
as described in the main text (where Γc = g, Γx = g/100, Γ′ =
g/50), since it is most representative of current experiments in
semiconductor systems in which these interactions are relevant.
Following Ref. [14], in order to account for the exciton-phonon
interaction, two additional terms are included in the Hamilto-
nian, via

Hp = ∑
q

h̄ωqb̂†
q b̂q + σ̂+σ̂− ∑

q
h̄λq(b̂q + b̂†

q ), (S5)

where b̂†
q and b̂q create and annihilate phonons with energy ωq,

respectively, and λk (assumed real) is the electron-phonon cou-
pling strength. The first term above describes the free energy
of the phonon occupations, and the second describes the cou-
pling between the phonon bath and the exciton. The modified
Hamiltonian becomes H̃ = H + Hp, where H is given as before
by H = h̄ΔxLσ̂+σ̂− + h̄ΔcL â† â + h̄g(â†σ̂− + σ̂+ â) + h̄ηx(σ̂+ +
σ̂−) + +h̄ηc(â† + â). Upon undergoing a polaron transforma-
tion, H′ = exp(S)H̃ exp(−S), with S = σ̂+σ̂− ∑k h̄λk(b̂q − b̂†

q ),
we obtain a modified system Hamiltonian,

H′
sys = h̄(ΔL − ΔP)σ̂

+σ̂− + ΔLâ† â ++h̄ηc(â + â†) + 〈B〉 Xg,
(S6)

where Xu = h̄g(â†σ̂− + âσ̂+) + h̄ηx(âσ̂+ + â†σ̂−), Xg =

ih̄g(â†σ̂− − âσ̂+) + ih̄ηx(âσ̂+ − â†σ̂−), and the polaron shift

given by ΔP =
∫ ∞

0
J(ω)

ω . The spectral function, J(ω), character-
izes the electron-phonon interaction. As seen above, parts of the

original Hamiltonian, namely the dot-cavity coupling strength,
g, and the pump rate of the driving laser, ηx, are renormalized
by a temperature dependent Frank-Condon factor 〈B〉. This
mean phonon displacement operator, at temperature T, is given

by 〈B〉 = exp
[
− 1

2
∫ ∞

0 dω
J(ω)
ω2 coth(h̄ω/2kBT)

]
, where we have

used 〈B〉 = 〈B+〉 = 〈B−〉, with B̂± = exp[± ∑q λq/ωq(b̂q −
b̂†

q )].
The major phonon interactions for InGaAs QDs are due to

the deformation potential [31], which can be represented by the
spectral function, J(ω) = αp ω3 exp(−ω2/2ω2

b). Considering
InGaAs QDs, we use phonon coupling parameters estimated
by McCutcheon at al. [32] from the experiments of Ramsay et
al. [11, 12], where ωb = 1 meV and αp/(2π)2 = 0.027 [11, 12,
32]; larger values of αp have been reported [17], though these
numbers vary in the literature (e.g., see discussions in Ref. [17]).

We next introduce the time-convolutionless (i.e., where ρ(t)
is local in time) for the reduced density operator, ρ(t), of the
cavity-QED system [15, 32]. In the interaction picture described
by H′

sys, we consider the exciton-photon-phonon coupling to
second-order Born approximation, and trace over the phonon
degrees of freedom to obtain a time convolutionless master
equation [14, 32]:

∂ρ

∂t
=

1
ih̄
[H′

sys, ρ(t)] + L(ρ)− 1

h̄2

∫ ∞

0
dτ ∑

m=g,u

(
Gm(τ)

× [X̂m, e−iH′
sysτ/h̄ X̂meiH′

sysτ/h̄ρ(t)] + H.c
)

, (S7)

where Lindblad operator terms, L(ρ), are the same as in
the main text, and the polaron Green functions, which are
obtained by tracing of the phonon degrees of freedom, are
given by [8, 15], Gg(t) = 〈B〉2 (cosh[φ(t)]− 1) , Gu(t) =

〈B〉2 sinh[φ(t)], and the phonon correlation function, φ(t) =∫ ∞
0 dω

J(ω)
ω2 [coth(h̄ω/2kBT) cos(ωt)− i sin(ωt)] . In practise,

the phonon non-Markovian (memory) effects are extremely
short timescale phenomena, and one can solve the above by re-
placing t → ∞ in the integral [14, 32]. Thus we solve a Marko-
vian master equation where the laser-dressed eigenvalues lo-
cally sample the phonon bath at different pump-dependent
spectral locations.

A. Exciton driving with an off-resonant pump field

We now asses the influence of phonon-induced scattering on
our previously described multiphoton effects. In Fig. S1 (and
also shown as Fig. 10 of the main paper) we examine the cavity-
emitted spectrum that can be compared to Fig. 7 of the main
text—which described the multiphoton contribution to the pair
of peaks centered near ω = ωL + 5g. For clarity, we have ab-
sorbed the polaron shift, ΔP, into the definition of ωx. Here
(with phonon interactions) the spectrum is calculated for a
smaller pump power which results in a pair of more clearly
separated peaks, which are expected to cross at approximately
ηx = 5g. The effects of phonons are explored with these spec-
tra for a phonon bath temperature of 4 K. We retain the bare
coupling strength, g, and pump power, ηx (for ease of com-
parison to previous figures); however, all of these are now co-
herently renormalized (through the polaron transform) by 〈B〉
though this renormalization at 4 K is small (〈B〉 = 0.96). As
a consequence of electron-phonon coupling, we observe a gen-
eral broadening of all spectral features (EID), and an enhance-
ment of the peak located at the cavity emission energy. These
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Fig. S1. Cavity-emitted spectra with an exciton drive, demon-
strating the effects of phonon scattering at 4 K for parameter
set-A in the main text (Γc = g, Γx = g/100, Γ′ = g/50), with an
excitation pump power of ηx = 3g with a detuning of ΔL = 6g.
All spectra have been normalized to 1.

effects are further amplified with increased temperatures (not
shown), and, from the master equations, they generally scale
with η2

x (EID) and g2 (causing phonon-mediated exciton cavity
coupling or feeding). Importantly, for a temperature of 4 K, all
of the peaks present in the no phonon picture remain visible. In
fact, a log plot of the spectrum demonstrates that even peaks
that are not readily visible with a linear scale in the no-phonon
spectra are not necessarily lost due to interactions with acoustic
phonons.

Having established that it is possible to identify relevant
peaks, even with phonon-induced broadening for at least one
spectrum near a crossing of peaks with significant multipho-
ton contributions, we now examine the more general case. In
Fig. S2, we present a plot of the cavity-emitted PL spectra as a
function of pump power for parameter set-A with the phonons
bath at a temperature of 4 K. We again retain the original g and
ηx, and allow them to be renormalized by 〈B〉 = 0.96, as ap-
propriate. This figure can be compared and contrasted to the
plot in Fig. 6 of the main text, which presents the same calcula-
tions without explicitly including phonon contributions. Upon
comparison, we observe an overall broadening of the spectral
features, which results in the visibility of fewer peaks. How-
ever, even upon the inclusion of phonons, there is still a clear
deviation from the JC-WEA results—which are represented by
dashed black lines overlaid upon the image. In particular, the
phonon bath serves to strengthen the peak that is consistently
present at the cavity frequency, ωc—which is one of the devi-
ations we observed from the JC-WEA. Additionally, it is still
possible, though more challenging, to observe the crossing that
takes place at a pump power of approximately ηx = 5g. This is
highlighted in the lower panel of the figure, in which transition
lines calculated using a two excitation approximation are over-
laid over the image as a visual guide. As a note, we have found
these results to be robust for detunings ranging from ΔL = 3g
to ΔL = 10g, with larger pump-cavity detunings being more
favourable. Additionally, the sign of ΔL has no significant qual-
itative effects on our results. Detuning the cavity to the opposite
side of the laser decreases the oscillator strength of the peaks on
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Fig. S2. N−photon spectral map (plotting the log of the cav-
ity emitted spectra for a range of QD excitation energies).
Phonons are included at a temperature of 4 K, and the calcula-
tion is done using parameter set-A with a detuning of ΔL = 6g.
The dashed curves in the upper panel show the transition en-
ergies calculated in the JC-WEA (see main paper), and the dot-
ted curves in the lower panel show a relevant subset of the
transitions calculated in the two excitation approximation.
Transitions not associated with visible peaks are ignored for
the two excitation approximation for visual clarity.
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Fig. S3. Cavity-emitted spectra for parameter set-A with
phonons at a temperature of 4 K. From bottom to top, the
pump powers range from ηx = 3g → 4.5g in increments of
0.25g. The detuning is ΔL = 6g and all spectra have been nor-
malized to 1.
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the weaker half of the spectrum, with only small quantitative ef-
fects in the region of interest (not shown).

Since it is difficult to clearly view the crossing of interest
using a spectral map, we examine it more closely by present-
ing spectra for a range of pump power from 3g to 4.5g, in
increments of 0.25g in Fig. S3. These spectra clearly show a
strong peak at the cavity frequency ωc = ωL + 6g, as well as
a smaller peak that begins to merge with it from lower energy.
The phonon-induced broadening prevents clear observation of
the smaller peak after the crossing is completed (not shown).

Modification of the Hamiltonian to include the effects of
electron-acoustic phonon interactions—and thereby make a
more direct connection to realistic semiconductor systems—has
provided extra insight into the visibility of multiphoton effects
in realistic QD systems. In particular, we found that the pres-
ence of the phonon bath leads to an enhancement of the peak at
the cavity emission energy as well as a general spectral broad-
ening of all peaks, similar to what happens for the recent pre-
diction of phonon-dressed Mollow triplets [14]. The first of
these effects emphasizes the difference in the pump power de-
pendence of the N−photon versus the WEA results by enhanc-
ing one of the peaks that deviates most strongly from WEA be-
haviour. The latter diminishes the ability to observe all spec-
tral features, making it more difficult to observe these effects.
In general, the phonon induced broadening was not signifi-
cant enough to wash out all spectral features for temperatures
around 4 K, and therefore the deviations from the WEA result,
though less prominent, still appear to be observable in the pres-
ence of the phonon bath. Further optimization of the param-
eters would likely make these multi-photon signatures even
more pronounced.

B. Cavity driving with an off-resonant pump field

Near the end of section 3 in the main paper we examined multi-
photon effects for cavity driven systems, for parameters appro-
priate for describing semiconductor systems. Here, we include
the effects of electron-acoustic phonon coupling to the N−th
order and verify that the multiphoton effects we predict are re-
tained with this more complete theoretical treatment.

An N−photon spectral map calculated for a temperature of
4 K is presented in Fig. S4. This can be compared to the spec-
tral map of Fig. 8 of the main text in which the same parame-
ters were used, without accounting for the presence of phonons.
As before, both cavity and excitonic emissions are shown. No
significant modifications are observed on this level, primar-
ily since EID is not expected to effect cavity driven systems—
which was the primary source of phonon induced effects. We
note that the deviations we previously noted from the JC-WEA
are still clearly visible.

In order to observe the extent of the modifications result-
ing from the inclusion of phonons, we select a spectrum with
an excitation energy of ηc = 6g, which falls in a regime in
which significant deviations from the JC-WEA should be ob-
servable. In Fig. S5 (also shown as Fig. 11 in the main paper),
we present this spectra at a phonon bath temperature of 4 K,
as well as the equivalent spectrum calculated without the pres-
ence of the phonon bath. We observe that phonons now have
a significantly less dramatic effect on the spectra for a cavity-
driven system, in contrast to the QD-driven systems examined
above. In particular, they only have a minor perturbation on
the multiphoton spectral peaks.
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Fig. S4. Cavity emitted and exciton emitted N−photon spec-
tral map (plotting the log of the cavity emitted spectra for
a range of excitation energies) for a cavity driven system.
Phonons are included at a temperature of 4 K, and the calcula-
tion is done using parameter set-A with a detuning of ΔL = 6g.
The dashed curves show the transition energies calculated in
the JC-WEA.
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Fig. S5. Cavity-emitted spectra for a cavity driven system,
demonstrating the effects of phonon scattering at 4 K for pa-
rameter set-A, with an excitation pump power of ηx = 6g and
ΔL = 6g.
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