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all the elements of a realistic circuit and (B) an explicit general algorithm for implementing the 
decomposition described in the main text. © 2016 Optical Society of America

A. Characterizing a realistic universal multiport interferome-
ter

Programming a universal multiport interferometer using our
procedure requires a preliminary full characterization of its
beam splitters and phase shifters. This is a simple procedure,
similar in spirit to that proposed by Mower et al [1], and only
has to be done once, provided that there is no long-term drift of
the optical properties of the interferometer.

At every step in the process, we choose a path through the
interferometer which can be broken by setting a single beam
splitter in the path to full transmission. We then input light into
that path, and scan through the reflectivity of that beam split-
ter while monitoring the output. This allows us to characterise
that beam splitter. We then set it to be fully transmissive, and
move on to a different path until every beam splitter has been
characterised and the interferometer implements the identity to
within single-mode phase shifts.

Individual phase shifters can then be characterized by cre-
ating simple interfering paths through the interferometer, and
modulating the phase shifters in those paths. Every interfering
path consists of several phase shifters, but since there are many
more possible interfering paths than phase shifters, the phase
shifters can still be individually characterized. We note that the
phase shifters at the input of the interferometer cannot be indi-
vidually characterised in this way, but these are typically not
relevant for most applications.

The preceding protocol assumes that the beam splitters can
perfectly implement the identity. This is typically not the case
for real interferometers, where small amounts of light will leak
through. However, the approach proposed by Mower et al to
overcome this problem also works for our design. This light
can be isolated and removed from the characterisation process
by varying the reflectivities of the beam splitters not along the

path being broken, in such a way that the spurious light can be
identified in the Fourier transform of the output signal.

B. General decomposition procedure

The unitary matrix decomposition procedure presented in the
main text can easily be generalised to any N × N unitary ma-
trix. Elements of Û are consecutively nulled using Tm,n or T−1

m,n
matrices, which physically correspond to beam splitters in the
final interferometer, in the pattern shown in figure S1.

The algorithm that implements the decomposition is the fol-
lowing:

Algorithm S1. Unitary Matrix Decomposition Algorithm

1: procedure DECOMPOSE(U)
2: for i from 1 to N − 1 do
3: if i is odd then
4: for j = 0 to i − 1 do
5: Find a T−1

i−j,i−j+1 matrix that nulls element

(N − j, i − j) of Û
6: Update Û = ÛT−1

i−j,i−j+1.

7: else
8: for j = 1 to i do
9: Find a TN+j−i−1,N+j−i matrix that nulls ele-

ment (N + j − i, j) of Û
10: Update Û = TN+j−i−1,N+j−iÛ

After this decomposition procedure, we obtain the following
expression:
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Fig. S1. Illustration of the order in which matrix elements of
a unitary matrix Û are nulled. The first element to be nulled
is at the bottom left of the matrix. The following elements are
then nulled in consecutive diagonals. A black element located
in column i is nulled with a T−1

i,i+1 matrix, and a blue element
located in row i is nulled with a Ti−1,i matrix.
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where D is a diagonal matrix corresponding to single-mode
phases, and SL and SR are the respective orderings of the (m, n)
indices for the Tm,n or T−1

m,n matrices yielded by our decomposi-
tion. This can be rewritten as:
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We can then find a matrix D′ and Tm,n matrices such that the

previous equation can be re-written as:

Û = D′

 ∏
(m,n)∈S

Tm,n


where S is, by construction, the order of beam splitters corre-
sponding to the desired circuit. This completes our decomposi-
tion.
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