optica

Spatial beam intensity shaping using phase masks on single mode optical fibers fabricated by femtosecond direct laser writing: supplementary materials

Timo Gissibl*, Michael Schmid, and Harald Giessen
$4^{\text {th }}$ Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
* Corresponding author: t.gissibl@pi4.uni-stuttgart.de

Published 19 April 2016

Abstract

This document provides supplementary information to "Spatial beam intensity shaping using phase masks on single mode optical fibers fabricated by femtosecond direct laser writing," http://dx.doi.org/10.1364/optica.3.000448. © 2016 Optical Society of America

http://dx.doi.org/10.1364/optica.3.000448.s001

1. SUPPLEMENTARY FIGURES

Figure S1 depicts different diffractive optical elements directly written onto an optical single mode fiber. The phase masks consist of four, five, and six rings and have a total diameter of $4.4 \mu \mathrm{~m}$. Each ring is limited to a maximal height of $2 \mu \mathrm{~m}$ in simulation. As target a donut shaped intensity distribution is chosen. The numerical simulations of the circular phase masks consisting of four rings results in surface relief heights of $787 \mathrm{~nm}, 797 \mathrm{~nm}, 833 \mathrm{~nm}$, and 970 nm beginning at the center (Fig. S1, bottom). The heights of the phase plate with five rings are $785 \mathrm{~nm}, 793 \mathrm{~nm}, 805 \mathrm{~nm}, 868 \mathrm{~nm}$, and 979 nm (Fig. S1, middle) and for the six ring phase plate $680 \mathrm{~nm}, 666 \mathrm{~nm}, 663 \mathrm{~nm}, 720 \mathrm{~nm}$, 622 nm , and 875 nm (Fig. S1, top).

Figure S 2 shows the comparison between two different fabrication methods. In Fig. S2a the phase mask is written ring-byring, whereas in Fig. S2c a layer-by-layer approach is used. The corresponding measurements results are depicted in Fig. S2b and S2d. The two measurements are in excellent agreement.

Fig. S1. Comparison of the intensity distribution at a distance of 10 mm behind the fiber end for different numbers of diffractive rings. Structure designs of diffractive optical elements for shaping a donut with different numbers of rings. For each structure the Huygens-Fresnel diffraction integral is numerically solved in an iterative optimization algorithm in order to obtain the desired donut shaped intensity distribution.

Fig. S2. Comparison of different fabrication methods using three-dimensional direct laser writing. (a) The diffractive optical element is fabricated ring-by-ring. (b) Measured intensity distribution at different distances behind the fiber end. (c) The diffractive optical element is fabricated layer-by-layer. (d) Measured intensity distribution at different distances behind the fiber end.

