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1. EXPANDED METHODS AND MATERIALS

A. Sub-diffuse Spatial Frequency Domain Imaging Setup and
Parameter Fitting

Imaging was performed using a commercial spatial frequency
domain imaging system (Modulating Imaging, Inc., Irvine,
CA). This unit acquired spatial frequencies over the range of
fx = [0− 0.2, 0.5− 0.9] mm−1 in steps of 0.05 mm−1 with source
LEDs centered about [658, 730, 850] nm. In order to maximize
signal from low-ordered scattered photons, cross-polarizing fil-
ters were removed. However, to mitigate the effect of specularly
reflected photons, projections were obliquely illuminated and a
signal acquired from a measurement of water in a deep (≈ 50
cm) well with dark non-reflecting walls was subtracted from
both the sample and reference intensity maps to approximate
the specular reflection [1]. Maps of calibrated reflectance were
calculated by ratioing demodulated intensity maps of the sam-
ple with a reference measurement of Intralipid 1 % and mul-
tiplying by a model reflectance value calculated from Eqs. S1
& S2 using well-documented optical properties for Intralipid
[2]. The reflectance model is broken into piecewise contribu-
tions from a semi-empirical sub-diffusive expression, Eq. S1,
described in Kanick et al. [3] and a diffusion theory model, Eq.
S2, described in Cuccia et al. [4]. The combination is comple-
mentary because the sub-diffusive model, RSubDiff( fx, µ′s, γ), is
sensitive to scatter directionality but does not account for optical

absorption whereas the diffusion theory model, RDiff( fx, µa, µ′s),
assumes diffusive photon propagation but characterizes both
diffuse scatter and absorption. Thus, only spatial frequencies
above 0.5 mm−1 [5], which have negligible signal contribution
from absorption for typical optical properties of tissue in the
near-infrared (NIR) window [6], were analyzed with the sub-
diffusive model, and spatial frequencies below 0.2 mm−1, which
meet assumptions of diffusion for typical tissue optical prop-
erties in the NIR window, were analyzed with the diffusion
theory model. The calibrated images of demodulated reflectance
over the acquired spatial frequencies and wavelengths Rd( fx, λ)
were inverted into maps of µ′s, γ, and µa with a non-linear least
squares minimization using the expressions:
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Rd( fx, µa, µ′s, γ) =

{
RDiff if fx ≤ 0.2 mm−1

RSubDiff if fx ≥ 0.5 mm−1

In the diffusive model, the parameter α′ is a proportionality
constant, accounting for surface boundary effects [7]. In the sub-
diffusive model, the fitted model parameter set [η, ζ] reported in
[3] provided accurate descriptions of reflectance intensities over
a wide range of scattering properties, including: µ′s = [0.3− 10]
mm−1 and γ = [1.3− 1.9]. The present study utilized Monte
Carlo (MC) simulations to characterize an expanded range of γ
values spanning a range that have been previously reported in
tissue [3, 8–10]; this full range of γ is not able to be considered
using the Modified Henyey Greenstein phase function [11] that
was used to develop Eqn. S1 in [3]. Here, a customized MC
model was used to consider scattering phase functions calcu-
lated using Mie Theory, with input parameters used to specify
a discrete set of scatterers in suspension. These simulations
constructed phase functions with 7 discrete particle sizes in the
range of [0.1− 2.0 µm] with a fractal dimension of the scatter-
ers in the range of [2.6− 4.9] in steps of 0.1, with an index of
refraction mismatch of (1.37/1.33) between the scatterers and
surrounding fluid; these input combinations yielded a set of
24 phase functions with a wide range of values for both g1=
[0.55− 0.98] and γ= [1.2− 2.4]. The MC simulations returned
reflectance intensity vs. distance from a point source at an air-
medium interface and a 1-dimensional Hankel transformation
was used for conversion to a spatial frequency basis [4]. Values
for µ′s and fx were selected to yield 40 values of dimensionless
scattering (i.e. fx/µ′s) over the range [0− 1] [-] for each sampled
phase function. Figure S1 shows reflectance vs. dimension-
less scattering for both MC simulations and predictions of Eqn.
S1, in plots S1a and S1b respectively. The predictions of the
semi-empirical model accurately match the simulated data, with
the squared Pearson product moment correlation coefficient of
r2 = 0.987 and a mean absolute error between model and sim-
ulation data of < 9% over fx/µ′s = [0− 1] [-] for all simulated
phase functions. Inspection of the data in Figure S1 highlight
the non-uniqueness of reflectance intensity in terms of µ′s and
γ; with reflectance monotonically decreasing with increasing
fx/µ′s and exhibiting a γ-specific proportionality for high spatial
frequencies.

Fig. S1. Reflectance vs. dimensionless scattering from (a)
Monte Carlo simulations and (b) semi-empirical model pre-
dictions.

Imaged Rd( fx, λ) data were fit to Eqs. S1 & S2 on a pixel-
by-pixel basis, returning images of µ′s, γ, and µa at each mea-
sured wavelength where µ′s was assumed to follow a power law,
µ′s(λ) = A( λ

800 nm )−B, in which A is the scatter amplitude and
corresponds directly to µ′s(800 nm), B is the scatter power, and

γ(λ) was fitted as a free parameter at each wavelength. An anal-
ysis algorithm was coded in MATLAB (R2015a, MathWorks Inc.
Natick, MA) that automatically identified and excluded pixels
that were non-scattering or contained specular reflection, and
the code was deployed on an 8-core parallel processing CPU.
The average time to recover a parameter map for a 2.5 cm x 2.5
cm tissue sample that contained roughly 3000 pixels was ≈ 1
hour. Fitting time could be rapidly decreased by employing a
look-up-table (LUT) and/or further parallelization of the fit pro-
cedure. All demodulated images were processed with a median
filter having a kernel size of 2 mm x 2 mm ([10 x 10] pixels) to re-
duce noise originating from a poor signal-to-noise ratio at higher
spatial frequencies. Moreover, it is important to note that 97.5 %
of pixel-based estimates of γ from tissue samples were within
the validated parameter space for the semi-empirical model (i.e.
1.3 <γ < 2.4), with the remaining 2.5% of pixels designated as
outliers.

It is important to note that the model-based interpretation
of high spatial frequency data in this study assumes statistical
homogeneity in scatterer orientation. Previous work by Konecky
et al. [12] showed that rotation of the illumination pattern could
provide sensitivity to the micro-alignment and organization of
scatterers within an imaged sample. Future work could con-
sider rotation of the incident illumination to provide a coupled
assessment of density, size, and orientation.

B. Imaging of Sub-Diffuse Scattering Properties in the Pres-
ence of a Strong Absorber

An aqueous phantom set was constructed to confirm the ac-
curacy of scattering parameters in the presence of absorption
based attenuation. This phantom set contained nine phantoms
with coupled variation of Df = [3.6, 4.1, 4.6] and the absorption
coefficient, which was varied by adding incremental amounts
of Evans Blue dye to achieve µa = [0.02− 0.18] mm−1 such that
the ratio µ′s

µa
ranged from 5.6 to 50 at 658 nm. Data in Fig. S2

show that both µ′s and γ are accurately recovered in the presence
of a strong optical absorber.

C. Heterogeneous Optical Property Phantoms: Step Change
in Scatter Contrast

While the aqueous polystyrene bead phantoms allow for the
direct quantification of µ′s and γ with comparison to theoretical
values from Mie theory, these phantoms fail to demonstrate the
ability to spatially resolve scattering optical properties in a het-
erogeneous phantom. As such, agarose phantoms with a step
change in either scatter size or density were constructed and
imaged (I) to demonstrate proof of principle, and (II) to estimate
resolution and sensitivity of the optical scattering parameters.
Phantoms were gelled with 10 g/L of agarose in phosphate
buffered solution, which was brought to a boil, cooled to ap-
proximately 40C◦, mixed with the scattering agent, and finally
poured into a rectangular mold submerged in ice for gelling
to occur. For the step change in scatter size, 2 g/L of titanium
dioxide powder and 1.5 % Intralipid were used as the scattering
agents, while the step change in scatter density was 1 % and 5
% Intralipid concentrations. A summary of the heterogeneous
phantom data is shown in Figure S3. As shown in Figure S3(a,b),
there is little visible contrast between the titanium dioxide and
Intralipid phantoms and only slight contrast between the 1 %
and 5 % Intralipid concentrations. However, the γ and µ′s optical
property maps in Figure S3(c,d) very clearly recover scatter size
and density based contrast. In Figure S3(e,f), the edge response
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Fig. S3. Annotated photographs of scatter size (a) and density (b) step change agarose phantoms with titanium dioxide and In-
tralipid in (a) and 1% and 5% Intralipid in (b). Corresponding gray-scale optical property maps are shown, with γ for scatter size
change in (c) and µ′s for scatter density change in (d). Edge response functions are shown in (e) for both γ and µ′s averaged in the
y direction. Corresponding line spread functions are shown in (f), which is the derivative of (e) approximated by a forward finite
difference. In (g), the percentage of full contrast reached as a function of edge width across the step is plotted for both scatter size
and density contrast. Note that a pixel width is 200 µm, and so in (g) each point is plotted in steps of 400 µm, iteratively adding a
pixel to each side of the boundary.

Fig. S2. (a) Photograph of the γ and µa variation phantom set,
showing visible blue contrast between the various phantoms
in each row with a change in Df in each column. (b) Recovered
µa, (c) γ, and (d) µ′s maps at 658 nm. (e-g) Reports recovered
experimental mean values versus Df for each well with error
bars representing one standard deviation above and below the
mean and black circles representing theoretical values for each
optical property.

function and line spread function for γ and µ′s shows the spatial
resolution and sensitivity of a step change of known contrast.
The percentage of full contrast as a function of distance across
the boundary is shown in Figure S3(g). The distance over which

75% contrast is reached is approximately 800 µm (4 pixels) for
γ and 2000 µm (10 pixels) for µ′s. This difference in resolution
originates from the sub-diffusive spatial frequency dependence
of γ, with spatial resolution < 1 mean free path, while µ′s has
both diffusive and sub-diffusive spatial frequency dependence
resulting in a resolution ≈ 1− 2 mean free paths. Sensitivity to
changes in optical properties is given by the line spread func-
tion in Figure S3(f), which is the derivative of the edge response
function. The maximum change in recovered optical property
between adjacent pixels is 0.09 for γ and 0.22 mm−1 for µ′s.

D. Dark Field Imaging of Ex-Vivo Tissue Samples

Each of the tissue specimens was imaged with the spatial fre-
quency imaging technique as shown in Figure 2, while a select
set of specimens were also imaged with a dark-field reflectance
microscope. The details of the dark-field microscope setup is
described elsewhere [13]. The illumination and bandwidth for
the dark-field imaging were selected by a home-built LabView
program to take a series of single shot images, one wavelength
at a time, with wavelength scanned from 450 nm to 650 nm with
a 10 nm bandwidth. Only a limited set of images were acquired
for a selected sample area, as it would take roughly 20 min to
scan the entire specimen by patch-wise imaging to cover the
entire sample and put the patches together. The origin of the
dark-field signal is inherently related to localized backscattering;
hence, it provided a unique standard with which to compare the
structured light scatter signal. As with structured light imaging,
dark field microscopy imaging was performed through a glass
slide to minimize surface curvature effects.
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E. Selection of Colormaps for Optical Parameter Visualization
The selection of color maps used to display maps of optical
properties were chosen as follows. For γ, µ′s, and scatter slope,
fully saturated HSV color maps were used, with a saturation and
brightness value of one. Each of these color maps goes through
half of the hue spectrum, with the γ color map spanning red,
yellow, and green and the µ′s color map spanning cyan, blue,
and magenta. The range of the color bar axes in each figure was
different, as the range of scattering values in the phantom sets
versus the tissue is different. However, the range of the color bar
axes within each figure, most notably in Figure 5, is the same
in order to provide direct visual comparison between the tissue
types. For the µa map in Figure S1(b), the default MATLAB,
2015a "parula" map was used.
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