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This document provides supplementary information to "Probing the fundamental detection 
limit of photonic crystal cavities," https://doi.org/10.1364/optica.4.000757. It consists of two 
parts: The first one details the different calculation steps that lead to  Eq. (2) of the main 
article, and the second one discusses the perturbation approach carried out in the main 
article in relation to the one developed by Yang et al. in [1].
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1. INTRODUCTION

The first purpose of this supplementary materials document is
to provide intermediate technical steps that have been imple-
mented to determine Eq. (2) and Eq. (5).

2. CALCULATION STEPS LEADING TO EQ. (2)

Our goal is to express the relative voltage fluctuation δU/U in
function of the frequency fluctuations δω of the cavity resonance.
The various notations are provided in the primary manuscript.
Setting a = 1

4Qi Qc
and b = 1

4Q2 , where Qi is the intrinsic cavity
quality factor, i.e. the quality factor of the photonic crystal cavity
free of any access waveguides, and Qc the quality factor resulting
from the in-plane coupling, the spectral response of the cavity is
given by:

S(ω0, ωp) =
a

((ωp −ω0)/ω0)2 + b
. (S1)

Introducing the out of plane scattered intensity Iscat = b
a Iin

at zero detuning, i.e. x = 0, this last equation can be rewritten as

S(ω0, ωp) =
b

((ωp −ω0)/ω0)2 + b
Iscat

Iin , (S2)

which corresponds to the equation (1) provided in the main
article. The fluctuation of the scattered intensity for a given
variation of the cavity frequency δω can be expressed as:

δIscat/Iin = −S(ω0, ωp) + S(ω0 + δω, ωp). (S3)

Using x = (ωp − ω0)/∆ω as defined in the main article,
provides a simplified expression of the two following quantities
that are involved in the development of Eq. (S3):(ωp −ω0

ω0

)2
= 4bx2, (S4)

(ωp −ω0 − δω

ω0 + δω

)2
= 4b

x− δω/∆ω

1 + δω/∆ω/Q
. (S5)

It follows:

δIscat

Iin = − 1
1 + 4x2 +

1

1 + 4
( x−δω/∆ω

1+δω/∆ω/Q
)2 . (S6)

The intensity that is measured without fluctuations for a
given detuning x is Iscat|x = 1

4x2+1 Iscat, which implies:

δIscat

Iscat|x
= −1 +

1 + 4x2

1 + 4
( x−δω/∆ω

1+δω/∆ω/Q
)2 = δU/U|δω . (S7)

The last equation corresponds to the equation (2) of the main
article since the photo voltage U is proportional to the scattered
intensity.

3. CALCULATION STEPS LEADING TO EQ. (5)

We consider that the photonic system is a closed system of vol-
ume V , i.e. we neglect any dissipation, which is a good ap-
proximation for high-Q cavities. The Helmholtz equation that
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governs the electric field ~E of a dielectric cavity whose dielectric
map is εc(~r), can be written as:

1
εc(~r)

~∇× ~∇× ~E =
(ω

c

)2
~E, (S8)

where × stands here for the vectorial product. Defining
the scalar product as <~E|~E>=

∫∫∫
V εc(~r)~E(~r)~E∗(~r)d~r, this last

equation can be written with an Hermitian operator Θ̂E~E =

λ0~E where λ0 = (ω/c)2. The symbol ∗ stands for the complex
conjugate. When a nanoparticle is present in the surrounding of
the cavity the dielectric map is modified as ε(~r) = εc(~r) + δε(~r)
where δε(~r) is the local perturbation induced by the nanoparticle.
Writing 1/(εc(~r) + δε(~r)) as

1
εc(~r)

− 1
εc(~r)

+
1

εc(~r) + δε(~r)
=

1
εc(~r)

− δε(~r)
εc(~r)(εc(~r) + δε(~r))

,

(S9)
the perturbed Helmholtz equation becomes:

1
εc(~r)

~∇× ~∇× ~E− δε(~r)
εc(~r)(εc(~r) + δε(~r))

~∇× ~∇× ~E =
(ω

c

)2
~E.

(S10)
Defining the perturbation operator V̂perturb as

V̂perturb =
δε(~r)

εc(~r)(εc(~r) + δε(~r))
~∇× ~∇×, (S11)

Eq. (S10) takes the operational form: (Θ̂E + V̂pert)~E = λpert~E
where the eigenvalue λpert can be written as λpert = λ0 + δλpert

From standard perturbation theory:

δλpert =
<~E|V̂perturb|~E>

<~E|~E>
= −λ0

∫ εc(~r)δε(~r)
εc(~r)+δε(~r) |~E(~r)|

2dV∫
εc(~r)|~E(~r)|2dV

. (S12)

Considering that the dielectric perturbation cancels, δε = 0,
except in the spatial domain defined by the nanoparticle of vol-
ume Vpart, and assuming that the field amplitude is constant
over the nanoparticle, the perturbation part of the operator eigen-
value is

δλpert = −λ0
δε(~R)

εc(~R) + δε(~R)

Vpart

Ve f f

εc(~R)|~E(~R)|2

max{εc(~r)|~E(~r)|2}
, (S13)

where the effective mode volume of the cavity is defined

as Ve f f =
∫

εc(~r)|~E(~r)|2dV
max{εc(~R)|~E(~R)|2}

. With our definition of the scalar

product, it follows that:

δλpert = −λ0
δε(~R)

εc(~R) + δε(~R)

Vpart

Ve f f

<~E|~E> |~r=~R

max{<~E|~E>}
. (S14)

Using the notations ||Epart||2 =<~E|~E> |~r=~R and ||Emax||2 =

max{<~E|~E>}, and the first order development δλpert = δω2 ≈
2ω0δω, we retrieve the equation of the main article.

δω

ω0
|pert = −

1
2

δε

εc + δε

Vpart

Ve f f

||Epart||2

||Emax||2
. (S15)

Note that the notations ||Epart||2 and ||Emax||2 stand for the
field intensity according to our definition of the scalar prod-
uct and should not be confused with the modulus of the fields
|Epart|2 and |Emax|2, more specifically ||Epart||2 = εc(~R)|Epart|2.

Our purpose now is to make contact between the approach
that has been developed in [1] and the closed system approxima-
tion. Using quasi-normal mode (QNM) (~̃E, ~̃H) with a complex-
valued eigenfrequency ω̃, the frequency shift induced by a per-
turbation of volume Vp has been determined in [1]:

δω̃

ω̃
= −

∫∫∫
Vp

δε(~r, ω̃)~̃E′(~r) · ~̃E(~r)d3~r∫∫∫
Ω

{
~̃E · ∂[ωε(~r,ω)]

∂ω
~̃E− ~̃H · ∂[ωµ(~r,ω)]

∂ω
~̃H
}

d3~r
, (S16)

where ~̃E′ represents the quasi normal mode dressed by the
perturbation and the volume Ω can be chosen as the entire space.
The tilde symbol highlights the complex value of the wave vector
of the QNM.

In analogy with the effective mode volume, a generalized
mode volume can be defined as:

Ṽ =

∫∫∫
Ω

{
~̃E · ∂[ωε(~r,ω)]

∂ω
~̃E− ~̃H · ∂[ωµ(~r,ω)]

∂ω
~̃H
}

d3~r

2{ε~̃E · ~̃E}
, (S17)

where {ε~̃E · ~̃E} is taken at the position that corresponds to
max{εc(~r)|~E(~r)|2}. When the imaginary part of the wave vector
vanishes, i.e. when the system can be considered as a close
system, the generalized mode volume Ṽ becomes identical to
Ve f f . With the definition of Ṽ, Eq. S16 can be expressed as:

δω̃

ω̃
= −1

2
Vp

Ṽ

1
Vp

∫∫∫
Vp

δε(~r, ω̃)~̃E′(~r) · ~̃E(~r)d3~r

{ε~̃E · ~̃E}
. (S18)

An approximation based on a local-field correction is carried
out in [1] to expressed the dressed electric field ~̃E′ in term of
the unperturbed electric field ~̃E. As a result, using our current
notations and Vp = Vpart, the complex frequency shift for a
spherical nano particle is given by:

δω̃

ω̃
= −1

2
δε(~R)

εc(~R) + δε(~R)/3

Vpart

Ṽ
εc(~R)~̃E(~R) · ~̃E(~R)
{ε~̃E · ~̃E}

. (S19)

Such an expression is similar to the one obtained for a closed
system, see Eq. S15, except the factor 1/3 in the denominator of
the fraction δε(~R)/(εc(~R)+ δε(~R)/3). Instead of the approxima-
tion implemented in [1], we suggest to take ~̃E′ = εc(~R)~̃E/ε(~R),
which leads to:

δω̃

ω̃
= −1

2
δε(~R)

εc(~R) + δε(~R)

Vpart

Ṽ
εc(~R)~̃E(~R) · ~̃E(~R)
{ε~̃E · ~̃E}

. (S20)

When the imaginary part of the wave vector tends to zero,
this last equation allows the expected convergence of the fre-
quency shift toward the one obtained for a closed system.

Note that writing ~̃E′ = εc(~R)~̃E/ε(~R) is equivalent to set the
equality of the perturbed and unperturbed electric displacement
fields at the position of the perturbation.
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Finally, the two approaches differ mainly in the definition 
of the mode volume. For high-Q cavities the effective mode
volume Ve f f is a good approximation whereas for strongly leaky 
modes Ve f f has to be replaced by the generalized mode volume 
as defined by Eq. S17.

4. CONCLUSION

This supplementary materials document adds extra information 
to support the results achieved in the main article entitled "Prob-
ing the fundamental detection limit of photonic crystal cavities," 
Optica volume 4, first page 757 (2017). We have detailed all 
the calculation steps that are necessary to retrieve Eq. (2) and
to relate δIscat/Iin and δU/U as defined in section 3 of the main 
manuscript. Furthermore, we have discussed the Eq. (5) of the 
main manuscript in view of the model developed in [1]. We 
have highlighted the differences and similarities between our 
approach leading to Eq. (5) and the approach followed by Yang 
et al. This comparison suggests modifying an approximation 
made by Yang et al. in order to make contact between these two 
approaches.
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