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1. MUTUALLY UNBIASED BASIS

Given a set of bases α0, . . . ,αn of dimension d, they are said to be mu-
tually unbiased with respect to one another if they satisfy the following
condition,

| j〈αi|αi′ 〉
j′ |2 =

δ j, j′ ∀ i = i′
1
d ∀ i , i′

; i ∈ {0, 1, ...n}, j ∈ {1, 2, .., d}.

(S1)
For dimensions where d is a power of a prime, d + 1 mutually unbiased
bases (MUBs) can be found. For 2-dimensional quantum key distri-
bution (QKD) protocols, photons can be encoded using polarization
and orbital angular momentum (OAM). We represent states of light
that have a particular polarization and OAM value using a compound
ket notation. In this way, if a photon has a certain polarization Π and
carries ` units of OAM, it is written as |Π, `〉.

The two MUBs of dimension 2 are given by,

{|ζ〉i} =

{
1
√

2
(|L,−`〉+ |R,+`〉) ,

1
√

2
(|L,−`〉 − |R,+`〉)

}
,

{|ξ〉 j} =

{
1
√

2
(|L,−`〉+ i |R,+`〉) ,

1
√

2
(|L,−`〉 − i |R,+`〉)

}
.

(S2)

In dimension 4, the natural basis is |k〉 ∈

{|H, `〉 , |H,−`〉 , |V , `〉 , |V ,−`〉}, and the two sets of MUBs {|ψ〉i} and
{|ϕ〉 j} were generated by the following matrices,

Mik
0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

M
jk
1 =

1
2



1 i 1 −i

1 i −1 i

1 −i 1 i

−1 i 1 i


, (S3)

such that |ψ〉i = Mik
0 |k〉 and |ϕ〉 j = M

jk
1 |k〉. This results in the

following states:

{|ψ〉i} = {|H,+`〉 , |H,−`〉 , |V ,+`〉 , |V ,−`〉} , (S4)

{|ϕ〉 j} =
{ 1
√

2
(|L, `〉+ |R,−`〉),

1
√

2
(|L, `〉 − |R,−`〉),

1
√

2
(|L,−`〉+ |R, `〉),

1
√

2
(|L,−`〉 − |R, `〉)

}
. (S5)
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Fig. S1. Visualization of MUBs in d=2 and d=4 Theoretical
probability-of-detection matrices (left column) for dimensions 2
and 4 using Eq. (S2) and Eqs. (S4–S5) by applying Eq. (S1). The
probability-of-detection matrices as measured in the laboratory (right
column) give bit error rates of 0.83% and 1.83% in dimensions 2
(` = 2) and 4 (` = 2), respectively.

Figure S1 shows a visual representation of the 2D (top row) and
4D (bottom row) MUBs using Eq. (S1), comparing the theoretical
probability-of-detection matrix to the experimental one as measured in
the laboratory, i.e. without the intra-city link. The quantum bit error
rate is calculated as one minus the average of the on-diagonal elements.
The calculated quantum bit error rates from the experimentally mea-
sured matrices are 0.83% and 1.83% in dimensions 2 (` = 2) and 4
(` = 2), respectively.

2. GENERATION OF IMPLEMENTED MUBS IN D = 2
AND 4

In order to create structured photons possessing both polarization and
OAM, we utilize patterned liquid crystal devices known as q-plates.
Q-plates coherently couple spin (i.e. polarization) to orbital angular
momentum such that ` = ±2q, where q is the topological charge of the
liquid crystal distribution. The action of a q-plate is as follows:

|L, 0〉
q−plate
−−−−−−→ |R,+2q〉 , (S6)

|R, 0〉
q−plate
−−−−−−→ |L,−2q〉 . (S7)

Since q-plates are linear devices, a photon in a superposition of |L, 0〉
and |R, 0〉 will be mapped to a state in a superposition of |R,+2q〉 and
|L,−2q〉. Thus, just as waveplates are used to transform polarization
states on the Poincaré sphere, waveplates in combination with a q-plate
perform the same transformations on a hybrid OAM-Poincaré sphere.

The MUBs in dimension 2, {|ζ〉i} and {|ξ〉 j} are generated using
the sequence of a half-wave plate (HWP) followed by a q-plate. The

waveplate angles are given in (S8).

state HWP

|ζ〉1 0◦

|ζ〉2 +45◦

|ξ〉1 +22.5◦

|ξ〉2 −22.5◦

(S8)

The MUBs in dimension 4, {|ψ〉i} and {|ϕ〉 j} are generated by sand-
wiching a q-plate between either HWPs or QWPs. If photons pass left
to right through the following optical elements, the waveplate angles
that Alice uses to generate {|ψ〉i} are given in the (S9), and {|ϕ〉 j} in
(S10).

state QWP before QP QWP after QP

|ψ〉1 −45◦ −45◦

|ψ〉2 +45◦ +45◦

|ψ〉3 −45◦ +45◦

|ψ〉4 +45◦ −45◦

(S9)

state HWP before QP HWP after QP

|ϕ〉1 0◦ 0◦

|ϕ〉2 +45◦ 0◦

|ϕ〉3 0◦ −

|ϕ〉4 +45◦ −

(S10)

Bob uses the same waveplate angles, but mirrors the sequence of
waveplates as Alice has in order to project his received photons onto a
particular state.

3. EXPERIMENTAL DATA

Coincidence counts are accumulated per 200 ms. For each of Bob’s
measurements, he records fifty data points. Bob obtains a probability-
of-detection matrix by averaging the data points for each measurement
and then normalizing over each state that Alice sends. The states that
Alice sends and the states that Bob projects onto are labelled on the
left and top, respectively, of each matrix below.

Normalized raw data for probability-of-detection matrix in dimen-
sion 2 as measured across the intra-city link using a q=1/2-plate, as
shown in Fig. 3a of the main text (top row):



1〈ζ | 2〈ζ | 1〈ξ| 2〈ξ|

|ζ〉1 0.971 0.029 0.421 0.579
|ζ〉2 0.062 0.938 0.677 0.323
|ξ〉1 0.731 0.269 0.959 0.041
|ξ〉2 0.459 0.541 0.068 0.932

 (S11)

Target corrected data from (S11):



1〈ζ | 2〈ζ | 1〈ξ| 2〈ξ|

|ζ〉1 0.972 0.028 0.351 0.649
|ζ〉2 0.050 0.950 0.653 0.347
|ξ〉1 0.725 0.275 0.961 0.039
|ξ〉2 0.463 0.537 0.069 0.931

 (S12)
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Normalized raw data for probability-of-detection matrix in dimen-
sion 4 as measured across the intra-city link:



1〈ψ| 3〈ψ| 2〈ψ| 4〈ψ| 1〈ϕ| 2〈ϕ| 3〈ϕ|3 4〈ϕ|

|ψ〉1 0.918 0.019 0.051 0.012 0.252 0.245 0.275 0.228
|ψ〉3 0.020 0.937 0.038 0.005 0.190 0.192 0.312 0.306
|ψ〉2 0.012 0.156 0.816 0.012 0.279 0.277 0.289 0.155
|ψ〉4 0.149 0.009 0.018 0.824 0.152 0.195 0.384 0.269
|ϕ〉1 0.319 0.125 0.325 0.231 0.869 0.039 0.064 0.029
|ϕ〉2 0.252 0.217 0.239 0.292 0.038 0.822 0.042 0.098
|ϕ〉3 0.185 0.177 0.447 0.191 0.065 0.027 0.872 0.037
|ϕ〉4 0.207 0.205 0.381 0.208 0.030 0.134 0.036 0.800


(S13)

Target corrected data from (S13), as shown in Fig. 3a of the main
text (bottom row):



1〈ψ| 3〈ψ| 2〈ψ| 4〈ψ| 1〈ϕ| 2〈ϕ| 3〈ϕ|3 4〈ϕ|

|ψ〉1 0.924 0.035 0.011 0.031 0.272 0.232 0.254 0.243
|ψ〉3 0.024 0.960 0.012 0.004 0.197 0.213 0.260 0.330
|ψ〉2 0.005 0.052 0.930 0.013 0.239 0.301 0.301 0.159
|ψ〉4 0.049 0.004 0.029 0.918 0.094 0.242 0.433 0.232
|ϕ〉1 0.376 0.108 0.321 0.195 0.874 0.033 0.065 0.028
|ϕ〉2 0.273 0.197 0.255 0.275 0.035 0.825 0.045 0.096
|ϕ〉3 0.200 0.132 0.511 0.157 0.060 0.016 0.889 0.035
|ϕ〉4 0.186 0.163 0.365 0.287 0.026 0.129 0.043 0.803


Normalized raw data for probability-ofdetection matrix in dimen-

sion 4 on a turbulent night:



1〈ψ| 3〈ψ| 2〈ψ| 4〈ψ| 1〈ϕ| 2〈ϕ| 3〈ϕ|3 4〈ϕ|

|ψ〉1 0.741 0.032 0.043 0.184 0.370 0.168 0.364 0.098
|ψ〉3 0.096 0.722 0.138 0.044 0.120 0.432 0.221 0.228
|ψ〉2 0.043 0.177 0.755 0.025 0.276 0.247 0.197 0.281
|ψ〉4 0.101 0.041 0.047 0.811 0.122 0.433 0.332 0.113
|ϕ〉1 0.126 0.471 0.197 0.206 0.707 0.051 0.144 0.098
|ϕ〉2 0.211 0.234 0.352 0.203 0.110 0.694 0.079 0.117
|ϕ〉3 0.265 0.285 0.259 0.191 0.195 0.056 0.632 0.117
|ϕ〉4 0.478 0.146 0.185 0.191 0.048 0.103 0.075 0.775


(S14)

4. NUMERICAL APPROACH FOR THE SECRET KEY
RATE CALCULATION

Here we use a numerical approach to calculate the secret key rate for
the MUBs in the current experiment that are shown in Eqs. (S3–S5).
The secret key rate calculation below relies on the dual optimization
problem that has recently been introduced as an efficient numerical
approach for unstructured quantum key distribution [1]. The main
result in [1] indicates that the achievable secure key rate is lower
bounded by the following maximization problem,

K ≥
Θ
ln2
− H(ZA|ZB), (S15)

where

Θ := max
−→
λ

−
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

j

Z j
AR(
−→
λ )Z j

A

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ − −→λ · −→γ

 , (S16)

and

R(
−→
λ ) := exp

(
−1 −

−→
λ ·
−→
Γ
)

. (S17)

Here ZA (ZB) denotes the measurement performed by Alice (Bob)
to derive the raw key, and −→γ = {γi := Tr(ρABΓi)} are determined
through average value of experimental measurements.

For the generalized BB84 in dimension d = 4 with two MUBs, the
experimental constraints can be summarized to

Key-map POVM: ZA =
{
|ψ〉i〈ψ|, for i = 1 · · · d = 4

}
(S18)

Constraints: 〈1〉 = 1 (S19)

〈EX〉 = Q (S20)

〈EZ〉 = Q (S21)

where EZ (X) are coarse-grained error operators inM0 (1) MUBs and
defined as

EX = 1 −

d=4∑
i

|ψ〉i〈ψ| ⊗ |ψ〉i〈ψ| (S22)

EZ = 1 −

d=4∑
i

|ϕ〉i〈ϕ| ⊗ |ϕ〉i〈ϕ|. (S23)

Eqs. (S4) and (S5) show the definition for |ψ〉i and |ϕ〉i basis states.
Figure S2 shows the numerical result of the optimization problem

in Eq. (S15) with MUBs in Eqs. (S4,S5) in comparison with the theo-
retical key rates in [2, 3]. This numerical approach may be extended to
find secret key rate per signal with two-way classical communications
to tolerate higher qubit error rates [4].
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Fig. S2. Secret key rate per signal for BB84 in d=4 with 2 MUBs
Solution to the numerical optimization problem in Eq. (S15) are
shown for different values of average error rates (red dots). As it can
be seen, the numerical optimization saturates the bound and shows a
good agreement with the theory from [2, 3]. For more details on the
numerical approach see [1].
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