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For dimensions where d is a power of a prime, d + 1 mutually unbiased
bases (MUBs) can be found. For 2-dimensional quantum key distri- 1 i 1 =i
bution (QKD) protocols, photons can be encoded using polarization .
and orbital angular momentum (OAM). We represent states of light ME = 1 1 io-1 , (S3)
that have a particular polarization and OAM value using a compound ! 211 41 i
ket notation. In this way, if a photon has a certain polarization IT and 1 1
- i i

carries ¢ units of OAM, it is written as |I1, £).
The two MUBs of dimension 2 are given by,

i 1 following states:
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In  dimension 4, the natural basis is  |k) € TOL -0 +IR0), 7“[‘ -0~ |R’€>)}'

such that |¢)' = M |k and |g)) = M [k). This results in the
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Theory Experimental waveplate angles are given in (S8).
1
= - state | HWP
a - -~ |§>l 0°
o 2
=~ =~ 19 +45° (S8)
< < —
2 = | +22.5°
ey {en ey e )2 | —22.5°
=~ =~ The MUBSs in dimension 4, {Iw)i } and {Igo)j } are generated by sand-
= = wiching a g-plate between either HWPs or QWPs. If photons pass left
) to right through the following optical elements, the waveplate angles
= - - that Alice uses to generate {|y)'} are given in the (S9), and {|p)/} in
= s (S10).
@l ol @l ol 0 state | QWP before QP | QWP after QP

Fig. S1. Visualization of MUBs in d=2 and d=4 Theoretical
probability-of-detection matrices (left column) for dimensions 2
and 4 using Eq. (S2) and Eqs. (S4-S5) by applying Eq. (S1). The
probability-of-detection matrices as measured in the laboratory (right
column) give bit error rates of 0.83% and 1.83% in dimensions 2

(¢ =2)and 4 (¢ = 2), respectively.

Figure S1 shows a visual representation of the 2D (top row) and
4D (bottom row) MUBs using Eq. (S1), comparing the theoretical
probability-of-detection matrix to the experimental one as measured in
the laboratory, i.e. without the intra-city link. The quantum bit error
rate is calculated as one minus the average of the on-diagonal elements.
The calculated quantum bit error rates from the experimentally mea-
sured matrices are 0.83% and 1.83% in dimensions 2 (£ = 2) and 4
(€ = 2), respectively.

2. GENERATION OF IMPLEMENTED MUBS IN D = 2
AND 4

In order to create structured photons possessing both polarization and
OAM, we utilize patterned liquid crystal devices known as g-plates.
Q-plates coherently couple spin (i.e. polarization) to orbital angular
momentum such that £ = +2¢, where ¢ is the topological charge of the
liquid crystal distribution. The action of a g-plate is as follows:

gq—plate

IL,0) —— IR +2q), (S6)
g-plate
R,0) —— |L,—2¢q). (87

Since g-plates are linear devices, a photon in a superposition of |L, 0)
and |R, 0) will be mapped to a state in a superposition of |R, +2¢g) and
|L, —2¢g). Thus, just as waveplates are used to transform polarization
states on the Poincaré sphere, waveplates in combination with a g-plate
perform the same transformations on a hybrid OAM-Poincaré sphere.

The MUBS in dimension 2, {|{ Y} and {|§)j } are generated using
the sequence of a half-wave plate (HWP) followed by a g-plate. The
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Bob uses the same waveplate angles, but mirrors the sequence of
waveplates as Alice has in order to project his received photons onto a
particular state.

3. EXPERIMENTAL DATA

Coincidence counts are accumulated per 200 ms. For each of Bob’s
measurements, he records fifty data points. Bob obtains a probability-
of-detection matrix by averaging the data points for each measurement
and then normalizing over each state that Alice sends. The states that
Alice sends and the states that Bob projects onto are labelled on the
left and top, respectively, of each matrix below.

Normalized raw data for probability-of-detection matrix in dimen-
sion 2 as measured across the intra-city link using a g=1/2-plate, as
shown in Fig. 3a of the main text (top row):
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Normalized raw data for probability-of-detection matrix in dimen-
sion 4 as measured across the intra-city link:

Yl 3wl 2wl Yl Nl el el el
|lp)1 0918 0.019 0.051 0.012 |0.252 0.245 0.275 0.228
|¢/>3 0.020 0.937 0.038 0.005|0.190 0.192 0.312 0.306
|zp)2 0.012 0.156 0.816 0.012 | 0.279 0.277 0.289 0.155
|l//>4 0.149 0.009 0.018 0.824|0.152 0.195 0.384 0.269
|rp>1 0.319 0.125 0.325 0.231|0.869 0.039 0.064 0.029
|<p)2 0.252 0.217 0.239 0.292 | 0.038 0.822 0.042 0.098
|(p)3 0.185 0.177 0.447 0.191 | 0.065 0.027 0.872 0.037
|<,a>4 0.207 0.205 0.381 0.208 | 0.030 0.134 0.036 0.800

Target corrected data from (S13), as shown in Fig. 3a of the main
text (bottom row):

Yl 3wl 2wl Yl Nl el el el
|W>1 0.924 0.035 0.011 0.031|0.272 0.232 0.254 0.243
|l//>3 0.024 0.960 0.012 0.004 | 0.197 0.213 0.260 0.330
|zp)2 0.005 0.052 0930 0.0130.239 0.301 0.301 0.159
|¢/>4 0.049 0.004 0.029 0918 | 0.094 0.242 0.433 0.232
|<p)1 0.376 0.108 0.321 0.195|0.874 0.033 0.065 0.028
|<p)2 0.273 0.197 0.255 0.275|0.035 0.825 0.045 0.096
|(p)3 0.200 0.132 0.511 0.157 | 0.060 0.016 0.889 0.035
|<p>4 0.186 0.163 0.365 0.287 | 0.026 0.129 0.043 0.803

Normalized raw data for probability-ofdetection matrix in dimen-
sion 4 on a turbulent night:

Ml 3@l 2l Yl Yol Xl el Xl
|n,0>' 0.741 0.032 0.043 0.184 | 0.370 0.168 0.364 0.098
|1//)3 0.096 0.722 0.138 0.044 | 0.120 0.432 0.221 0.228
|l//>2 0.043 0.177 0.755 0.025|0.276 0.247 0.197 0.281
Iz//)4 0.101 0.041 0.047 0.811|0.122 0.433 0.332 0.113
|¢,o)1 0.126 0.471 0.197 0.206 | 0.707 0.051 0.144 0.098
|g0)2 0.211 0.234 0.352 0.203 | 0.110 0.694 0.079 0.117
|t,0)3 0.265 0.285 0.259 0.191 | 0.195 0.056 0.632 0.117
|g0)4 0.478 0.146 0.185 0.191 | 0.048 0.103 0.075 0.775

4. NUMERICAL APPROACH FOR THE SECRET KEY
RATE CALCULATION

Here we use a numerical approach to calculate the secret key rate for
the MUBs in the current experiment that are shown in Egs. (S3-S5).
The secret key rate calculation below relies on the dual optimization
problem that has recently been introduced as an efficient numerical
approach for unstructured quantum key distribution [1]. The main
result in [1] indicates that the achievable secure key rate is lower
bounded by the following maximization problem,

K > g — H(ZA|ZB), (S15)
where
© := max [— ZZ};R(?)Z/]; -1 7J, (S16)
z j
and
— - =
R(/l).*exp(—ﬂ—/%l"). (517)

(S14)

(S13)

Here Z4 (Zp) denotes the measurement performed by Alice (Bob)
to derive the raw key, and 7 = {y; := Tr(papl;)} are determined
through average value of experimental measurements.

For the generalized BB84 in dimension d = 4 with two MUBs, the
experimental constraints can be summarized to

Key-map POVM:  Zy = {iy)(yl.for i=1---d =4} (SI8)
Constraints: (1) = 1 (S19)

(Ex)=20 (S20)

(Ez) =0 (821)

where Ez x) are coarse-grained error operators in Mg () MUBs and
defined as
Ex =1-

) (] @ Y] (S22)

d=4
i

d
Ez=1-

=4

o) (el ® ) (el (823)
1
Eqs. (S4) and (S5) show the definition for [i)' and |@) basis states.

Figure S2 shows the numerical result of the optimization problem
in Eq. (S15) with MUBSs in Egs. (S4,S5) in comparison with the theo-
retical key rates in [2, 3]. This numerical approach may be extended to
find secret key rate per signal with two-way classical communications
to tolerate higher qubit error rates [4].
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Fig. S2. Secret key rate per signal for BB84 in d=4 with 2 MUBs
Solution to the numerical optimization problem in Eq. (S15) are
shown for different values of average error rates (red dots). As it can
be seen, the numerical optimization saturates the bound and shows a
good agreement with the theory from [2, 3]. For more details on the
numerical approach see [1].
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